Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445632

RESUMEN

In T. gondii, as well as in other model organisms, gene knock-out using CRISPR-Cas9 is a suitable tool to identify the role of specific genes. The general consensus implies that only the gene of interest is affected by the knock-out. Is this really the case? In a previous study, we generated knock-out (KO) clones of TgRH88_077450 (SRS29B; SAG1) which differed in the numbers of the integrated dihydrofolate-reductase-thymidylate-synthase (MDHFR-TS) drug-selectable marker. Clones 18 and 33 had a single insertion of MDHFR-TS within SRS29B. Clone 6 was disrupted by the insertion of a short unrelated DNA-sequence, but the marker was integrated elsewhere. In clone 30, the marker was inserted into SRS29B, and several other MDHFR-TS copies were found in the genome. KO and wild-type (WT) tachyzoites had similar shapes, dimensions, and vitality. This prompted us to investigate the impact of genetic engineering on the overall proteome patterns of the four clones as compared to the respective WT. Comparative shotgun proteomics of the five strains was performed. Overall, 3236 proteins were identified. Principal component analysis of the proteomes revealed five distinct clusters corresponding to the five strains by both iTop3 and iLFQ algorithms. Detailed analysis of the differentially expressed proteins revealed that the target of the KO, srs29B, was lacking in all KO clones. In addition to this protein, 20 other proteins were differentially expressed between KO clones and WT or between different KO clones. The protein exhibiting the highest variation between the five strains was srs36D encoded by TgRH_016110. The deregulated expression of SRS36D was further validated by quantitative PCR. Moreover, the transcript levels of three other selected SRS genes, namely SRS36B, SRS46, and SRS57, exhibited significant differences between individual strains. These results indicate that knocking out a given gene may affect the expression of other genes. Therefore, care must be taken when specific phenotypes are regarded as a direct consequence of the KO of a given gene.


Asunto(s)
Toxoplasma , Toxoplasma/genética , Proteómica/métodos , Secuencia de Bases , Técnicas de Inactivación de Genes , Proteínas Protozoarias/genética , Proteínas Protozoarias/análisis , Células Clonales
3.
Neuron ; 111(16): 2523-2543.e10, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37321222

RESUMEN

Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Ratones , Humanos , Animales , Células de Purkinje/metabolismo , Parvalbúminas/metabolismo , Proteómica , Ratones Transgénicos , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Cerebelo/metabolismo , Interneuronas/metabolismo , Degeneración Nerviosa/patología , Modelos Animales de Enfermedad , Ataxina-1 , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-36512904

RESUMEN

The sesquiterpene lactone artemisinin and its amino-artemisinin derivatives artemiside (GC008) and artemisone (GC003) are potent antimalarials. The mode of action of artemisinins against Plasmodium sp is popularly ascribed to 'activation' of the peroxide group by heme-Fe(II) or labile Fe(II) to generate C-radicals that alkylate parasite proteins. An alternative postulate is that artemisinins elicit formation of reactive oxygen species by interfering with flavin disulfide reductases resposible for maintaining intraparasitic redox homeostasis. However, in contradistinction to the heme-activation mechanism, the amino-artemisinins are effective in vitro against non-heme-degrading apicomplexan parasites including T. gondii, with IC 50 values of 50-70 nM, and induce distinct ultrastructural alterations. However, T. gondii strains readily adapted to increased concentrations (2.5 µM) of these two compounds within few days. Thus, T. gondii strains that were resistant against artemisone and artemiside were generated by treating the T. gondii reference strain ME49 with stepwise increasing amounts of these compounds, yielding the artemisone resistant strain GC003R and the artemiside resistant strain GC008R. Differential analyses of the proteomes of these resistant strains compared to the wildtype ME49 revealed that 215 proteins were significantly downregulated in artemisone resistant tachyzoites and only 8 proteins in artemiside resistant tachyzoites as compared to their wildtype. Two proteins, namely a hypothetical protein encoded by ORF TGME49_236950, and the rhoptry neck protein RON2 encoded by ORF TGME49_300100 were downregulated in both resistant strains. Interestingly, eight proteins involved in ROS scavenging including catalase and superoxide dismutase were amongst the differentially downregulated proteins in the artemisone-resistant strain. In parallel, ROS formation was significantly enhanced in isolated tachyzoites from the artemisone resistant strain and - to a lesser extent - in tachyzoites from the artemiside resistant strain as compared to wildtype tachyzoites. These findings suggest that amino-artemisinin derivatives display a mechanism of action in T. gondii distinct from Plasmodium.


Asunto(s)
Antimaláricos , Toxoplasma , Especies Reactivas de Oxígeno , Proteómica , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Compuestos Ferrosos
5.
J Cell Commun Signal ; 17(3): 705-722, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36434320

RESUMEN

Memo1 deletion in mice causes premature aging and an unbalanced metabolism partially resembling Fgf23 and Klotho loss-of-function animals. We report a role for Memo's redox function in renal FGF23-Klotho signaling using mice with postnatally induced Memo deficiency in the whole body (cKO). Memo cKO mice showed impaired FGF23-driven renal ERK phosphorylation and transcriptional responses. FGF23 actions involved activation of oxidation-sensitive protein phosphotyrosyl phosphatases in the kidney. Redox proteomics revealed excessive thiols of Rho-GDP dissociation inhibitor 1 (Rho-GDI1) in Memo cKO, and we detected a functional interaction between Memo's redox function and oxidation at Rho-GDI1 Cys79. In isolated cellular systems, Rho-GDI1 did not directly affect FGF23-driven cell signaling, but we detected disturbed Rho-GDI1 dependent small Rho-GTPase protein abundance and activity in the kidney of Memo cKO mice. Collectively, this study reveals previously unknown layers in the regulation of renal FGF23 signaling and connects Memo with the network of small Rho-GTPases.

6.
Biomedicines ; 10(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36359195

RESUMEN

Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.

7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562906

RESUMEN

Circulating extracellular vesicles (cEV) are released by many kinds of cells and play an important role in cellular communication, signaling, inflammation modulation, coagulation, and tumor growth. cEV are of growing interest, not only as biomarkers, but also as potential treatment targets. However, very little is known about the effect of transporting biological samples from the clinical ward to the diagnostic laboratory, notably on the protein composition. Pneumatic tube systems (PTS) and human carriers (C) are both routinely used for transport, subjecting the samples to different ranges of mechanical forces. We therefore investigated qualitatively and quantitatively the effect of transport by C and PTS on the human cEV proteome and particle size distribution. We found that samples transported by PTS were subjected to intense, irregular, and multidirectional shocks, while those that were transported by C mostly underwent oscillations at a ground frequency of approximately 4 Hz. PTS resulted in the broadening of nanoparticle size distribution in platelet-free (PFP) but not in platelet-poor plasma (PPP). Cell-type specific cEV-associated protein abundances remained largely unaffected by the transport type. Since residual material of lymphocytes, monocytes, and platelets seemed to dominate cEV proteomes in PPP, it was concluded that PFP should be preferred for any further analyses. Differential expression showed that the impact of the transport method on cEV-associated protein composition was heterogeneous and likely donor-specific. Correlation analysis was nonetheless able to detect that vibration dose, shocks, and imparted energy were associated with different terms depending on the transport, namely in C with cytoskeleton-regulated cell organization activity, and in PTS with a release of extracellular vesicles, mainly from organelle origin, and specifically from mitochondrial structures. Feature selection algorithm identified proteins which, when considered together with the correlated protein-protein interaction network, could be viewed as surrogates of network clusters.


Asunto(s)
Vesículas Extracelulares , Proteoma , Coagulación Sanguínea , Plaquetas/metabolismo , Recolección de Muestras de Sangre/métodos , Humanos , Proteoma/metabolismo
8.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216497

RESUMEN

Neospora caninum is an apicomplexan parasite closely related to Toxoplasma gondii, and causes abortions, stillbirths and/or fetal malformations in livestock. Target-based drug development has led to the synthesis of calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs). Previous studies have shown that several BKIs have excellent efficacy against neosporosis in vitro and in vivo. However, several members of this class of compounds impair fertility in pregnant mouse models and cause embryonic malformation in a zebrafish (Danio rerio) model. Similar to the first-generation antiprotozoal drug quinine, some BKIs have a quinoline core structure. To identify common targets in both organisms, we performed differential affinity chromatography with cell-free extracts from N. caninum tachyzoites and D. rerio embryos using the 5-aminopyrazole-4-carboxamide (AC) compound BKI-1748 and quinine columns coupled to epoxy-activated sepharose followed by mass spectrometry. BKI-binding proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from BKI-1748 as well as quinine columns. In N. caninum, 12 proteins were bound specifically to BKI-1748 alone, and 105 proteins, including NcCDPK1, were bound to both BKI-1748 and quinine. For D. rerio, the corresponding numbers were 13 and 98 binding proteins, respectively. In both organisms, a majority of BKI-1748 binding proteins was involved in RNA binding and modification, in particular, splicing. Moreover, both datasets contained proteins involved in DNA binding or modification and key steps of intermediate metabolism. These results suggest that BKI-1748 interacts with not only specific targets in apicomplexans, such as CDPK1, but also with targets in other eukaryotes, which are involved in common, essential pathways.


Asunto(s)
Neospora/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Quinolonas/metabolismo , Pez Cebra/metabolismo , Animales , Antiprotozoarios/metabolismo , Células Cultivadas , Quinolinas/metabolismo
9.
J Proteomics ; 251: 104409, 2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-34758407

RESUMEN

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Asunto(s)
Proteoma , Proteómica , Laboratorios , Fosfoproteínas/análisis , Fosforilación , Proteoma/análisis , Proteómica/métodos , Estándares de Referencia , Reproducibilidad de los Resultados
10.
Eur Respir J ; 59(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34649979

RESUMEN

BACKGROUND: Radiomic features calculated from routine medical images show great potential for personalised medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multiorgan autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). Here, our objectives were to explore computed tomography (CT)-based high-dimensional image analysis ("radiomics") for disease characterisation, risk stratification and relaying information on lung pathophysiology in SSc-ILD. METHODS: We investigated two independent, prospectively followed SSc-ILD cohorts (Zurich, derivation cohort, n=90; Oslo, validation cohort, n=66). For every subject, we defined 1355 robust radiomic features from standard-of-care CT images. We performed unsupervised clustering to identify and characterise imaging-based patient clusters. A clinically applicable prognostic quantitative radiomic risk score (qRISSc) for progression-free survival (PFS) was derived from radiomic profiles using supervised analysis. The biological basis of qRISSc was assessed in a cross-species approach by correlation with lung proteomic, histological and gene expression data derived from mice with bleomycin-induced lung fibrosis. RESULTS: Radiomic profiling identified two clinically and prognostically distinct SSc-ILD patient clusters. To evaluate the clinical applicability, we derived and externally validated a binary, quantitative radiomic risk score (qRISSc) composed of 26 features that accurately predicted PFS and significantly improved upon clinical risk stratification parameters in multivariable Cox regression analyses in the pooled cohorts. A high qRISSc score, which identifies patients at risk for progression, was reverse translatable from human to experimental ILD and correlated with fibrotic pathway activation. CONCLUSIONS: Radiomics-based risk stratification using routine CT images provides complementary phenotypic, clinical and prognostic information significantly impacting clinical decision making in SSc-ILD.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Animales , Humanos , Pulmón/patología , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/etiología , Ratones , Pronóstico , Proteómica , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
11.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639127

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10-7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.


Asunto(s)
Nucleótidos/química , Compuestos de Rutenio/farmacología , Compuestos de Sulfhidrilo/química , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Humanos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Compuestos de Rutenio/química , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis/metabolismo , Tripanosomiasis/parasitología
12.
Invest Ophthalmol Vis Sci ; 62(10): 8, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34369983

RESUMEN

Purpose: The purpose of this study was to explore the interplay between the ocular surface microbiome and the tear proteome in humans in order to better understand the pathogenesis of ocular surface-associated diseases. Methods: Twenty eyes from 20 participants were included in the study. The ocular surface microbiome was sequenced by whole-metagenome shotgun sequencing using lid and conjunctival swabs. Furthermore, the tear proteome was identified using chromatography tandem mass spectrometry. After compositional and functional profiling of the metagenome and functional characterization of the proteome by gene ontology, association studies between the ocular microbiome and tear proteome were assessed. Results: Two hundred twenty-nine taxa were identified with Actinobacteria and Proteobacteria being the most abundant phyla with significantly more Propionibacterium acnes and Staphylococcus epidermidis in lid compared to conjunctival swabs. The lid metagenomes were enriched in genes of the glycolysis lll and adenosine nucleotides de novo and L-isoleucine biosynthesis. Correlations between the phylum Firmicutes and fatty acid metabolism, between the genus Agrobacterium as well as vitamin B1 synthesis and antimicrobial activity, and between biosynthesis of heme, L-arginine, as well as L-citrulline and human vision were detected. Conclusions: The ocular surface microbiome was found to be associated with the tear proteome with a role in human immune defense. This study has a potential impact on the development of treatment strategies for ocular surface-associated diseases.


Asunto(s)
Bacterias/genética , Conjuntiva/microbiología , Infecciones Bacterianas del Ojo/genética , Microbiota/fisiología , Proteoma/genética , Lágrimas/metabolismo , Anciano , Conjuntiva/metabolismo , Infecciones Bacterianas del Ojo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteoma/metabolismo
13.
BMC Cancer ; 21(1): 789, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238254

RESUMEN

BACKGROUND: Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress. Genomics is useful to elucidate the mutational landscape but remains limited in the prediction of therapeutic outcome and identification of targets for resistance. Dysregulation of phosphorylation-based signaling pathways is a hallmark of cancer, and therefore, kinase-inhibitors are playing an increasingly important role as targeted treatments. Untargeted phosphoproteomics analysis pipelines have been published but show limitations in inferring kinase-activities and identifying potential biomarkers of response and resistance. METHODS: We developed a phosphoproteomics workflow based on titanium dioxide phosphopeptide enrichment with subsequent analysis by liquid chromatography tandem mass spectrometry (LC-MS). We applied a novel Kinase-Activity Enrichment Analysis (KAEA) pipeline on differential phosphoproteomics profiles, which is based on the recently published SetRank enrichment algorithm  with reduced false positive rates. Kinase activities were inferred by this algorithm using an extensive reference database comprising five experimentally validated kinase-substrate meta-databases complemented with the NetworKIN in-silico prediction tool. For the proof of concept, we used human myeloid cell lines (K562, NB4, THP1, OCI-AML3, MOLM13 and MV4-11) with known oncogenic drivers and exposed them to clinically established kinase-inhibitors. RESULTS: Biologically meaningful over- and under-active kinases were identified by KAEA in the unperturbed human myeloid cell lines (K562, NB4, THP1, OCI-AML3 and MOLM13). To increase the inhibition signal of the driving oncogenic kinases, we exposed the K562 (BCR-ABL1) and MOLM13/MV4-11 (FLT3-ITD) cell lines to either Nilotinib or Midostaurin kinase inhibitors, respectively. We observed correct detection of expected direct (ABL, KIT, SRC) and indirect (MAPK) targets of Nilotinib in K562 as well as indirect (PRKC, MAPK, AKT, RPS6K) targets of Midostaurin in MOLM13/MV4-11, respectively. Moreover, our pipeline was able to characterize unexplored kinase-activities within the corresponding signaling networks. CONCLUSIONS: We developed and validated a novel KAEA pipeline for the analysis of differential phosphoproteomics MS profiling data. We provide translational researchers with an improved instrument to characterize the biological behavior of kinases in response or resistance to targeted treatment. Further investigations are warranted to determine the utility of KAEA to characterize mechanisms of disease progression and treatment failure using primary patient samples.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Células Mieloides/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteómica/métodos , Línea Celular Tumoral , Humanos , Mutación , Fosforilación
14.
Nat Commun ; 11(1): 5549, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144576

RESUMEN

Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10-20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors.


Asunto(s)
Linaje de la Célula , Plasticidad de la Célula , Proteínas Cromosómicas no Histona/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Transcripción/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Tumoral , Estudios de Cohortes , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Modelos Biológicos , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/genética , Transcriptoma/genética
15.
Microorganisms ; 8(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466554

RESUMEN

BACKGROUND: the apicomplexan parasite Neospora caninum causes important reproductive problems in farm animals, most notably in cattle. After infection via oocysts or tissue cysts, rapidly dividing tachyzoites infect various tissues and organs, and in immunocompetent hosts, they differentiate into slowly dividing bradyzoites, which form tissue cysts and constitute a resting stage persisting within infected tissues. Bumped kinase inhibitors (BKIs) of calcium dependent protein kinase 1 are promising drug candidates for the treatment of Neospora infections. BKI-1294 exposure of cell cultures infected with N. caninum tachyzoites results in the formation of massive multinucleated complexes (MNCs) containing numerous newly formed zoites, which remain viable for extended periods of time under drug pressure in vitro. MNC and tachyzoites exhibit considerable antigenic and structural differences. METHODS: Using shotgun mass spectrometry, we compared the proteomes of tachyzoites to BKI-1294 induced MNCs, and analyzed the mRNA expression levels of selected genes in both stages. RESULTS: More than half of the identified proteins are downregulated in MNCs as compared to tachyzoites. Only 12 proteins are upregulated, the majority of them containing SAG1 related sequence (SRS) domains, and some also known to be expressed in bradyzoites Conclusions: MNCs exhibit a proteome different from tachyzoites, share some bradyzoite-like features, but may constitute a third stage, which remains viable and ensures survival under adverse conditions such as drug pressure. We propose the term "baryzoites" for this stage (from Greek ßαρυσ = massive, bulky, heavy, inert).

16.
Chem Commun (Camb) ; 56(38): 5170-5173, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32266896

RESUMEN

We report the first method of enzyme protection enabling the production of partially shielded enzymes capable of processing substrates as large as proteins. We show that partially shielded sortase retains its transpeptidase activity and can perform bioconjugation reactions on antibodies. Moreover, a partially shielded trypsin is shown to outperform its soluble counterpart in terms of proteolytic kinetics. Remarkably, partial enzyme shielding results in a drastic increase in temporal stability of the enzyme.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Aminoaciltransferasas/química , Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Cinética , Tamaño de la Partícula , Proteolisis , Staphylococcus aureus/enzimología , Especificidad por Sustrato , Propiedades de Superficie
17.
PLoS One ; 14(2): e0212645, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30794648

RESUMEN

Bald thigh syndrome is a common hair loss disorder in sighthounds. Numerous possible causes, including environmental conditions, trauma, stress, endocrinopathies and genetic components have been proposed, but only endocrinopathies have been ruled out scientifically. The overall goal of our study was to identify the cause of bald thigh syndrome and the pathological changes associated with it. We approached this aim by comparing skin biopsies and hair shafts of affected and control dogs microscopically as well as by applying high-throughput technologies such as genomics, transcriptomics and proteomics. While the histology is rather unspecific in most cases, trichogram analysis and scanning electron microscopy revealed severe structural abnormalities in hair shafts of affected dogs. This finding is supported by the results of the transcriptomic and proteomic profiling where genes and proteins important for differentiation of the inner root sheath and the assembly of a proper hair shaft were downregulated. Transcriptome profiling revealed a downregulation of genes encoding 23 hair shaft keratins and 51 keratin associated proteins, as well as desmosomal cadherins and several actors of the BMP signaling pathway which is important for hair shaft differentiation. The lower expression of keratin 71 and desmocollin 2 on the mRNA level in skin biopsies corresponded with a decreased protein expression in the hair shafts of affected dogs. The genetic analysis revealed a missense variant in the IGFBP5 gene homozygous in all available Greyhounds and other sighthounds. Further research is required to clarify whether the IGFBP5 variant represents a predisposing genetic risk factor. We conclude from our results that structural defects in the hair shafts are the cause for this well-known disease and these defects are associated with a downregulation of genes and proteins essential for hair shaft formation. Our data add important knowledge to further understand the molecular mechanisms of HF morphogenesis and alopecia in dogs.


Asunto(s)
Alopecia , Enfermedades de los Perros , Cabello , Piel , Alopecia/genética , Alopecia/metabolismo , Alopecia/patología , Alopecia/veterinaria , Animales , Enfermedades de los Perros/genética , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/patología , Perros , Femenino , Regulación de la Expresión Génica , Cabello/metabolismo , Cabello/patología , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/biosíntesis , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Queratinas/biosíntesis , Queratinas/genética , Masculino , Piel/metabolismo , Piel/patología
18.
Anaerobe ; 56: 78-87, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30771460

RESUMEN

Clostridium chauvoei is the etiologic agent of blackleg in cattle, inducing fever, severe myonecrosis, oedemic lesions and ultimately death of infected animals. The pathogen often results in such rapid death that antibiotic therapy is futile and thus vaccination is the only efficient strategy in order to control the disease. The ß-barrel pore forming leucocidin Clostridium chauvoei toxin A (CctA) is one of the best characterised toxins of C. chauvoei and has been shown to be an important virulence factor. It has been reported to induce protective immunity and is conserved across C. chauvoei strains collected from diverse geographical locations for more than 50 years. The aim of this study was to identify the location of the CctA toxin during liquid culture fermentation and to use CctA to develop an in vitro assay to replace the current guinea pig challenge assay for vaccine potency in standard batch release procedures. We report that CctA is fully secreted in C. chauvoei culture and show that it is found abundantly in the supernatant of liquid cultures. Sera from cattle vaccinated with a commercial blackleg vaccine revealed strong haemolysin-neutralizing activity against recombinant CctA which reached titres of 1000 times 28 days post-vaccination. Similarly, guinea pig sera from an official potency control test reached titres of 600 times 14 days post-vaccination. In contrast, ELISA was not able to specifically measure anti-CctA antibodies in cattle serum due to strong cross-reactions with antibodies against other proteins present pre-vaccination. We conclude that haemolysin-neutralizing antibodies are a valuable measurement for protective immunity against blackleg and have the potential to be a suitable replacement of the guinea pig challenge potency test, which would forego the unnecessary challenge of laboratory animals.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Enfermedades de los Bovinos/prevención & control , Infecciones por Clostridium/veterinaria , Clostridium chauvoei/inmunología , Animales , Toxinas Bacterianas/metabolismo , Vacunas Bacterianas/administración & dosificación , Bovinos , Infecciones por Clostridium/prevención & control , Clostridium chauvoei/metabolismo , Medios de Cultivo/química , Ensayo de Inmunoadsorción Enzimática , Cobayas , Leucocidinas/inmunología , Leucocidinas/metabolismo , Pruebas de Neutralización , Factores de Virulencia/inmunología
19.
Elife ; 82019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30632963

RESUMEN

Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Coronavirus/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral , Animales , Línea Celular , Coronavirus/genética , Coronavirus/fisiología , Infecciones por Coronavirus/virología , Citoplasma/metabolismo , Citoplasma/virología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Fibroblastos/virología , Interacciones Huésped-Patógeno , Humanos , Ratones , Microscopía Electrónica de Transmisión , Biosíntesis de Proteínas , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
20.
ACS Chem Neurosci ; 10(1): 438-450, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30149702

RESUMEN

The serotonin-gated 5-HT3 receptor is a ligand-gated ion channel. Its location at the synapse in the central and peripheral nervous system has rendered it a prime pharmacological target, for example, for antiemetic drugs that bind with high affinity to the neurotransmitter binding site and prevent the opening of the channel. Advances in structural biology techniques have led to a surge of disclosed three-dimensional receptor structures; however, solving ligand-bound high-resolution 5-HT3 receptor structures has not been achieved to date. Ligand binding poses in the orthosteric binding site have been largely predicted from mutagenesis and docking studies. We report the synthesis of a series of photo-cross-linking compounds whose structures are based on the clinically used antiemetic drug granisetron (Kytril). These displaced [3H]granisetron from the orthosteric binding site with low nanomolar affinities and showed specific photo-cross-linking with the human 5-HT3 receptor. Detailed analysis by protein-MS/MS identified a residue (Met-228) near the tip of binding loop C as the covalent modification site.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Modelos Moleculares , Fármacos Fotosensibilizantes/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Unión Competitiva/efectos de los fármacos , Unión Competitiva/fisiología , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Granisetrón/química , Granisetrón/metabolismo , Granisetrón/farmacología , Células HEK293 , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Estructura Secundaria de Proteína , Antagonistas del Receptor de Serotonina 5-HT3/química , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...